-
B.O. Demirci, O. Bugdayci, G. Ertas, D.E.T. Sanlı, H. Kaya, E. Arıbal (2023). Linear Regression Modeling Based Scoring System to Reduce Benign Breast Biopsies Using Multi-parametric US with Color Doppler and SWE. Acad Radiol. 2023 Feb 16:S1076-6332(23)00039-9. doi: 10.1016/j.acra.2023.01.024..
-
S. Azamat, Ş. Karaman, I.F. Azamat, G. Ertas, C.B. Kulle, M. Keskin, R. Sakin, B. Bakır, E.N Oral, M.G. Kartal (2022). Complete Response Evaluation of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy using Textural Features Obtained from T2 Weighted Imaging and ADC Maps. Current Medical Imaging, doi: 10.2174/ 1573405618666220303111026.
-
G. Ertas (2021). Attenuation Model Free Classification of Diffusion MR Signals of the Breast Tissue using Long Short-Term Memory Networks. Balkan Journal of Electrical and Computer Engineering, 9(3), 278-283
-
A. Onay, G. Ertas, M. Vural, E. Colak, T. Esen, B. Bakir (2020). The role of T2-weighted images in assessing the grade of extraprostatic extension of the prostate carcinoma. Abdominal Radiology, 45:3293-3300.
-
G. Ertas (2020). Development of a Radial Basis Function Neural Network Model to Predict High b-value Diffusion MR Signals of the Prostate. International Journal of Intelligent Systems and Applications in Engineering, 8(2), 45-51.
-
G. Ertas (2019). Estimating The Distributed Diffusion Coefficient of Breast Tissue in Diffusion-Weighted Imaging using Multilayer Perceptrons. Soft Computing, 23:7821-7830.
-
G. Ertas (2019). Fitting Intravoxel Incoherent Motion Model to Diffusion MR Signals of the Human Breast Tissue Using Particle Swarm Optimization. An International Journal of Optimization and Control: Theories Applications, 9(2):105-112.
-
G. Ertas (2018). Detection of High GS Risk Group Prostate Tumors by Diffusion Tensor Imaging and Logistic Regression Modelling. Magnetic Resonance Imaging, 50:125-133.
-
G. Ertas (2018). Neural Network Based Classification of Melanocytic Lesions in Dermoscopy: Role of Input Vector Encoding. Electrica, 18(2):242-248.
- G. Ertas, C. Onaygil, O. Bugdayci, E. Aribal (2018). Dual-Phase ADC Modelling of Breast Masses in Diffusion-Weighted Imaging: Comparison with Histopathologic Findings. European Journal of Breast Health, 14:85-92.
-
A. Onay, G. Ertas, M. Vural, O. Acar, Y. Salicam, B. Coskun, S. Akpek (2017). Evaluation of Peripheral Zone Prostate Cancer Aggressiveness using the Ratio of Diffusion Tensor Imaging Measures. Contrast Media Molecular Imaging. Contrast Media & Molecular Imaging: 5678350.
-
G. Ertas, S. Doran and M.O. Leach (2017). A Computerized Volumetric Segmentation Method Applicable to Multi-Centre MRI Data to Support Computer-Aided Breast Tissue Analysis, Density Assessment and Lesion Localization. Medical & Biological Engineering & Computing, 55(1):57-68.
-
G. Ertas, C. Onaygil, Y. Akin, H. Kaya and E. Aribal (2016). Quantitative Differentiation of Breast Lesions at 3T Diffusion-Weighted Imaging (DWI) using The Ratio of Distributed Diffusion Coefficient (DDC). Journal of Magnetic Resonance Imaging, 44(6):1633-1641.
-
S. Bozkurt and G. Ertas (2015). Comparison of Left and Right Fingertip PPG Signals Using Signal Power Estimates and Poincare Indexes. American Journal of Biomedical and Life Sciences, 3:6-10.
-
M. Vural, G. Ertas, A. Onay, O. Acar, T. Esen, Y. Saglican, H.P. Zengingonul and S. Akpek, (2014). Conspicuity of Peripheral Zone Prostate Cancer on Computed Diffusion-Weighted Imaging: Comparison of cDWI1500, cDWI2000, and cDWI3000. Biomed Res Int: 768291.
-
M.A. Schmidt, M. Borri, E. Scurr, G. Ertas, G. Payne, E. O’Flynn, N. deSouza and M. O. Leach (2013). Breast dynamic contrast-enhanced examinations with fat suppression: Are contrast-agent uptake curves affected by magnetic field inhomogeneity?. European Radiology, 23:1537–1545.
-
G. Ertas, S. Doran and M.O. Leach (2011). Computerized Detection of Breast Lesions in Multi-Centre and Multi-Instrument DCE-MR Data using 3D Principal Component Maps and Template Matching. Physics in Medicine and Biology, 56:7795–7811.
-
G. Ertas, H.O. Gulcur and M. Tunaci (2008). An Interactive Dynamic Analysis and Decision Support Software for MR Mammography. Computerized Medical Imaging and Graphics, 32(4):284-293.
-
G. Ertas, H.O. Gulcur and M. Tunaci (2008). Normalized Maximum Intensity Time Ratio Maps and Morphological Descriptors for Assessment of Malignancy in MR Mammography. Medical Physics, 35(5):1-8.
-
G. Ertas, H.O. Gulcur, M. Tunaci, O. Osman and O.N. Ucan (2008). A Preliminary Study on Computerized Lesion Localization in MR Mammography using 3D nMITR Maps, Multilayer Cellular Neural Networks and Fuzzy c-Partitioning. Medical Physics, 35(1):195-205.
-
G. Ertas, H.O. Gulcur, O. Osman, O.N. Ucan, M. Tunaci and M. Dursun (2008). Breast MR Segmentation and Lesion Detection with Cellular Neural Networks and 3D Template Matching. Computers in Medicine and Biology, 38(1):116-126.
- G. Ertas, H.O. Gulcur and M. Tunaci (2007). Improved Lesion Detection in MR Mammography: Three-Dimensional Segmentation, Moving Voxel Sampling, and Normalized Maximum Intensity–Time Ratio Entropy", Academic Radiology, 14(2):151-161.