Fluid Mechanics

Course Code:

ME 331

Course Period:

Autumn

Course Type:

Core

Credits:

3

Theoric:

2

Practice:

2

Laboratory Hour:

0

ECTS:

6

Prerequisite Courses:

Differential Equations [1] Thermodynamics I [2] Course Language:

English

Courses given by:

<u>Hojin Ahn (Erdem An)</u> [3] <u>Ali Bahadır Olcay</u> [4] Course Objectives: The course aims to provide basic understanding in fluid mechanics and background knowledge to higher-level courses in fluid mechanics.

Course Content:

Fundamental principles of fluid mechanics and their application to engineering problems. Fluid statics. Fluid flow concepts. Control-volume analysis. Conservation equations and applications. Dimensional analysis and similitude. Flow of viscous fluids, simple laminar flow systems, turbulence, internal and external flow applications.

Course Methodology:

1: Lecture, 3: Homework

Course Evaluation Methods:

A: Midterm and final exams, B: Quiz, C: Homework

Learning Outcomes	Program Outcomes	Teaching Methods	Assessment Methods
1) Adequate knowledge on properties of fluids, pressure distribution in hydrostatic systems, integral and differential forms of momentum balance and laminar and turbulent flows	1	1,3	A,B,C
2) Ability to identify, formulate, and solve complex engineering problems involvinglaminar and turbulent flows; ability to select and	1,2,3	1,3	A,B,C
apply proper analysis and modeling methods for this purpose.			

COURSE CONTENT						
Week	Topics	Study Materials				
1	Properties of fluids, basic concepts	Textbook				
2	Pressure, hydrostatics and its application	Textbook				
3	Hydrostatic force and moment calculations	Textbook				
4	Flow kinematics	Textbook				
5	Conservation of mass, Bernoulli equation	Textbook				
6	Applications of Bernoulli equation	Textbook				
7	Conservation of momentum	Textbook				

8	Applications of integral momentum equation	Textbook
9	Dimensionless analysis, laws of similarity and scaling	Textbook
10	Flows in pipes, friction factor	Textbook
11	Moody chart	Textbook
12	Differential mass and momentum balance equations	Textbook
13	Analytic solutions of Navier-Stokes equations	Textbook
14	External flows, lift and drag forces	Textbook

RECOMMENDED SOURCES							
Textbook							
Additional ResourcesFluid Mechanics Fundamentals and Applications, Cengel Cimbala (Ders kitabı) Fluid Mechanics, F. White							
	A First Course in Fluid Mechanics, R.H. Sabersky, A.J. Acosta, E.G.						
	Hauptmann						
	Fluid Mechanics with Applications, A. Esposito						
	Introduction to fluid mechanics, R.W. Fox						

ASSESSMENT							
IN-TERM STUDIES	NUMBER	PERCENTAGE					
Midterms	2	50					
Homeworks	2	10					
Quizzes	2	10					
Total		100					
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		30					
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		70					
Total		100					

COURSE'S CONTRIBUTION TO PROGRAM

No	Program Learning Outcomes		Contribution					
		NA	1	2	3	4	5	
1	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in complex engineering problems.					X		
2	Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.				X			
3	Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.	x						
4	Ability to devise, select, and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.	x						
5	Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.	x						
6	Ability to work efficiently in intra-disciplinary and multi- disciplinary teams; ability to work individually.	x						
7	Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.	x						
8	Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.	x						
9	Consciousness to behave according to ethical principles and professional and ethical responsibility; knowledge on standards used in engineering practice.	x						
10	Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.	X						

11	Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.	x			
12	Ability to work professionally in both thermal and mechanical systems areas, including design and realization.	X			
13	Ability to verify and validate numerical solutions to engineering problems.	x			

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Excluding exam weeks: 12x Total course hours)	12	4	48
Hours for off-the-classroom study (Pre-study, practice)	14	4	56
Midterms	2	3	12
Homework	2	4	8
Quiz	2	3	6
Final examination	1	10	10
Total Work Load			138
Total Work Load / 25 (h)			5.6
ECTS Credit of the Course			6