Dynamics

Course Code: ME 244 Course Period: Spring Course Type: Core Credits: 3 Theoric: 2 Practice: 2 Laboratory Hour: 0 ECTS: 6 Prerequisite Courses: Statics [1] Course Language: English Courses given by:

<u>Mehmet A. Akgün</u> [2] <u>Koray K. Şafak</u> [3] Course Objectives: • To teach the two fundamental subjects of dynamics, namely; kinematics (relations between position/velocity/acceleration and time) and kinetics (relations between force, mass, acceleration and time) of dynamic bodies with engineering examples. • To teach students the notion of inertia, at the university level, and its importance in engineering systems in motion. • To give them the ability to analyze forces and motion.

Course Content:

Dynamics of particles: Rectilinear and curvilinear motion. Newton's laws, momentum and angular momentum methods. Work and energy. System of particles. Dynamics of rigid bodies in plane motion; kinematics and kinetics. Work and energy method and the momentum principles for rigid bodies.

Course Methodology:

1: Lecture, 3: Homework

Course Evaluation Methods:

A: Midterm and final exam, B: Quiz, C: Homework

Learning Outcomes	Program Outcomes	Teaching Methods	Assessment Methods
 An ability to analyze motion of particles and rigid bodies, with examples from engineering. 	1, 2	1, 3	A, B, C
1. An ability to analyze forces/moments and their relations with motion.	1, 2	1, 3	A, B, C
 Concepts of power, energy, linear and angular momentum as applied to engineering systems in motion. 	1, 2	1, 3	A, B, C

COURSE CONTENT						
Week	Topics	Study Materials				
1	Kinematics of particles	Textbook				
2	Kinematics of particles	Textbook				
3	Kinematics of particles	Textbook				
4	Kinetics of particles: force and acceleration	Textbook				
5	Kinetics of particles: force and acceleration	Textbook				

6	Kinetics of particles: work and energy	Textbook
7	Kinetics of particles: work and energy	Textbook
8	Kinetics of particles: impulse and momentum	Textbook
9	Planar kinematics of a rigid body	Textbook
10	Planar kinematics of a rigid body	Textbook
11	Planar kinetics of a rigid body: force and acceleration	Textbook
12	Planar kinetics of a rigid body: force and acceleration	Textbook
13	Planar kinetics of a rigid body: work and energy	Textbook
14	Planar kinetics of a rigid body: impulse and momentum	Textbook

RECOMMENDED SOURCES							
Textbook	TextbookR.C. Hibbeler, Engineering Mechanics: Dynamics, 12th ed. In SI units, Prentice Hall, 2010.						
Additional Resources							

MATERIAL SHARING						
Documents Syllabus, Attendance, Gradin						
Assignments	Homework assignments					
Exams	None					

ASSESSMENT							
IN-TERM STUDIES	NUMBER	PERCENTAGE					
Midterms	2	20					
Homeworks and quizzes	8-10	20					
Total		60					
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40					
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60					
Total		100					

COURSE'S CONTRIBUTION TO PROGRAM								
No	Program Learning Outcomes	Cont		Contribution				
		NA	1	2	3	4	5	
1	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in complex engineering problems.						X	
2	Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.	x						
3	Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.	x						
4	Ability to devise, select, and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.	x						
5	Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.	x						
6	Ability to work efficiently in intra-disciplinary and multi- disciplinary teams; ability to work individually.	x						
7	Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.	x						
8	Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.	x						
9	Consciousness to behave according to ethical principles and professional and ethical responsibility; knowledge on standards used in engineering practice.	X						

10	Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.	X			
11	Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.	X			
12	Ability to work professionally in both thermal and mechanical systems areas, including design and realization.	x			
13	Ability to verify and validate numerical solutions to engineering problems.	x			

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Including the exam week: 16x Total course hours)	16	4	64
Hours for off-the-classroom study (Pre-study, practice)	16	4	64
Mid-terms	2	4	8
Final examination	1	8	8
Total Work Load			144
Total Work Load / 25 (h)			5.76
ECTS Credit of the Course			6