COURSE INFORMATION

Course Title	Code	Semester	L+P+L Hour	Credits	ECTS
Introduction to Scientific Computing in Octave	ES 117	Fall/Spring	2+0+2	3	5

Prerequisites	None
Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programme)
Course Type	Compulsory/Elective
Course Coordinator	Ali Fethi Okyar
Instructors	Ufuk Tan Baler, Halil İbrahim Yavuz, Cihat Boyraz, Mehmet Gökhan Gökçen
Assistants	None
Goals	Introduce students with computer hardware, operating systems and scientific open softwares running on them. Engage with the console, start coding, and get help from open AI tools. Use open scientific libraries for computing. Control versions using git.
Content	Basic parts of computer hardware. Knowledge about the operating system and structure of the filesystem. The shell interpreter. Scientific computing by using the Octave/Matlab libraries.
Contribution of the Course to Engineering Education	To overcome the barriers in way of human-machine communications by teaching one or more computer languages

Learning Outcomes	Programme Learning Outcomes	Teaching Methods	Assessment Methods
1) Calculate moderately complex mathematical expressions using an appropriate scientific library	4a	1,5	А
 Define and manipulate numerical and character arrays 	4a	1,5	А
 Use relational and logical operators to construct loops and conditional statements 	4a	1,5	А

4) To translate an algorithm from a pseudocode or flowchart to a code in computer language	4a	1,5	А
5) To read and trace code in computer language and construct it's pseudocode	4a	1,5	А
6) To use a modern version control system to collaborate with others	4b	5	G
7) To get help from AI interfaces during the learning process	8a	2	В

Teaching Methods:	1: Lecture, 2: Self-study, 5: Laboratory
Assessment Methods:	A: Written Exam, B: Homework, G: Lab Assessment

COURSE CONTENT				
Week	Topics	Study Materials		
1	Course conduct	syllabus, lecture-1		
2	Interacting with an operating system	lecture-2, lab-1		
3	Programming environments: Octave/MATLAB, and Git	lecture-3, lab-2		
4	Data types, operator precedence, registers	lecture-4		
5	Array definitions in Octave/MATLAB	lecture-5, lab-3		
6	Basic input and output, and defining functions	lecture-6, lab-4		
7	Midterm	Materials by the midterm		
8	Logical operators, using "find"	lecture-7, lab-5		
9	The "if-else" conditional	lecture-8, lab-6, lab-7		
10	"for" loops	lecture-9, lecture-10, lab-7		
11	"while" loops	lecture-9, lecture-10, lab-7		
12	Generating data series for plotting	lecture-11, lab-8		
13	File read/write operations	lecture-12, lab-8		
14	Term review	lab-9		

RECOMMENDED SOURCES					
Textbook	N/A				
Additional Resources	 1- Getting started with MATLAB, Rudra Pratap 2- Numerical computing with MATLAB, Cleve B. Moler 3- Octave and MATLAB for engineers Andreas Stahel, Bern University of Applied Sciences, Switzerland. Version of 10th September 2020: https://web.sha1.bfh.science/Labs/PWF/Documentation/OctaveAtBFH.pd 4- Version control, git book: https://git-scm.com/book/en/v2 				

MATERIAL SHARING

Documents	Lecture Slides, <u>https://github.com/muhendislikYeditepe/es117-template</u> Lab Manuals, <u>https://github.com/muhendislikYeditepe/es117-template</u>
Assignments	Weekly assignments
Exams	Midterm and Final

ASSESSMENT						
IN-TERM STUDIES	NUMBER	PERCENTAGE				
Midterm Exam	1	35				
Homework / Lab Assessment	10	15				
Final Exam	1	50				
Total		100				
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		50				
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		50				
Total		100				

COURSE CATEGORY

Faculty Elective

	COURSE'S CONTRIBUTION TO PROGRAMME						
No	Program Learning Outcomes		С	onti	ribu	tion	
		1	2	3	4	5	
4a	Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice.					X	

4b	Ability to employ information technologies effectively.		Х
8a	Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice.	x	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Lectures	13	2	26
Laboratories	13	2	26
Off-the-classroom study (pre-study, practice for 14 weeks)	14	4.5	63
Midterm Exam	1	2	2
Final Exam	1	2	2
Total Work Load			119
Total Work Load / 25 (h)			4.7
ECTS Credit of the Course			5