Systems Programming

Course Code:
CSE 232
Course Period:
Spring
Course Type:
Core
Credits:
3
Theoric:
2
Practice:
1
Laboratory Hour:
1
ECTS:
6
Prerequisite Courses:
Fundamentals of Computer Programming [1] Course Language:
English
Course Objectives:

The aim of this course is to provide students with knowledge and abilities to design system programs such as assemblers, linkers, loaders, macro-processors, editors, interpreters, compilers and operating systems using modern methodologies and to implement their design using modern development tools.

Course Content:

Numbering system, basic computer hardware, assembly language programming, assemblers, relocation, linkers, loaders, macro processors, text editors, debuggers, formal specification of programming languages, introduction to compilers, interpreters, introduction to operating systems, Linux shell programming, term project.

Course Methodology:

1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study

Course Evaluation Methods:

A: Testing, B: Experiment, C: Homework, D: Project

Course Learning Outcomes	Program	Teaching Methods	Assessment Methods	
	Learning Outcomes			
1) Adequate knowledge in system programs (assemblers, loaders, linkers, macro- processors, text editors, debuggers, interpreters, compilers, operating systems).	1	1,4	A,D	
 Ability to use theoretical and applied information in these areas to design system software with realistic constraints. 	4	1,2,4	A,B,D	
3) Ability to conduct experiments, gather data, analyze and interpret results for investigating solutions to real life applications with assembly language programming and Unix shell programming.	4,5	1,3	A,C	
4) Ability to devise, select, and use modern techniques and tools needed for the design and implementation of system programs.	4	1,2,3,4	A,B,D	
5) Ability to work efficiently in intra-disciplinary teams and to work individually.	6	3,4	B,D	

COURSE CONTENT

Week	Topics	Study Materials
1	Introduction (Numbering system, basic computer hardware, systems software, assembly language, addressing modes)	Textbook
2	Assembly Language Programming I (M6800 Instruction set, conditional instructions)	Textbook

3	Assembly Language Programming II (Loops, indexed addressing, subroutines)	Textbook
4	Assemblers	Textbook
5	Relocation and Loaders	Textbook
6	Linking	Textbook
7	MIDTERM EXAM I	Textbook
8	Macro-processors, C preprocessor	Textbook
9	Text editors and Debuggers	Textbook
10	Formal specification of programming languages and introduction to compilers	Textbook
11	Interpreters (parsing, symbol table, processing of statements), Shell programming	Textbook
12	MIDTERM EXAM II	Textbook
13	Introduction to operating systems I (user interface, I/O, Shell programming)	Textbook
14	Introduction to operating systems II (machine-independent functions, Shell programming)	Textbook

RECOMMENDED SOURCES

Textbook	Lecture Notes: <u>http://coadys.yeditepe.edu.tr/</u> [2] Lab material: <u>http://coadsys.yeditepe.edu.tr/</u> [3]				
Additional ResourcesW. Wray, J. Greenfield, R. Bannatyne, "Using Microprocessors a Microcomputers", Prentice-Hall					
	L. Beck, "System Software", Addison Wesley				
	D.H. Marcellus, "Systems Programming for Small Computers", Prentice Hall				
	A. Silberschatz, et al., "Operating System Concepts", Addison- Wesley				

ASSESSMENT

IN-TERM STUDIES	NUMBER	PERCENTAGE
Mid-terms	2	70
Assignment		

Lab	Work 10			15			
Terr	n Project 1			15			
Tota	al			10	0		
COI OVE	NTRIBUTION OF FINAL EXAMINATION TO ERALL GRADE			35			
COI GR/	NTRIBUTION OF IN-TERM STUDIES TO OVERALL ADE			65			
Tota	al			10	0		
COI	URSE'S CONTRIBUTION TO PROGRAM						
No	Program Learning Outcomes	_	Сс	ontri	but	ion	
			1	2	3	4	5
1	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.						X
2	Ability to identify, formulate, and solve complex engineerin problems; ability to select and apply proper analysis and modeling methods for this purpose.	g		x			
3	Ability to design a complex system, process, device or product under realistic constraints and conditions, in such way as to meet the desired result; ability to apply modern design methods for this purpose.	а			х		
4	Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.						X
5	Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.						X
6	Ability to work efficiently in intra-disciplinary and multi- disciplinary teams; ability to work individually.						X
7	Ability to communicate effectively both orally and in writing knowledge of a minimum of one foreign language.	l;		х			
8	Recognition of the need for lifelong learning; ability to acce information, to follow developments in science and technology, and to continue to educate him/herself.	ess		Х			
9	Awareness of professional and ethical responsibility.				Х		

10	Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.	x
11	Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.	x

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Excluding the exam weeks: 12x Total course hours)	12	4	48
Hours for off-the-classroom study (Pre-study, practice)	10	3	30
Midterm examination	2	2	4
Homework	10	4	40
Project	1	25	25
Final examination	1	3	3
Total Work Load			150
Total Work Load / 25 (h)			6.0
ECTS Credit of the Course			6