Embedded Systems Programming

Course Code: CSE 326 Course Period: Spring

Course Type:

Area Elective

Credits:

3

Theoric:

3

Practice:

0

Laboratory Hour:

0

ECTS:

5

Course Language:

English

Course Objectives:

This hands-on course introduces embedded systems and the embedded development/programming/debugging techniques. Through a series of exercises, students acquire skills in developing/programming/debug embedded Linux systems.

Course Content:

Anatomy of an Embedded System. Why embedded Linux? Processor Basics. Linux Basics. RS232. Terminal Emulators. Cross-development Environment (Native/Target compilation). Bootloaders. Setting up Network Services. Booting the Kernel (SD-Card or NFS/TFTP). Configuring/Building linux kernel and root file system. Framebuffer, touchscreen device. Embedded Graphics, Embedded Graphics Frameworks, Qt/Qt Embedded, Virtual Framebuffer. GPIO, sysfs. Gstreamer, Gstreamer pipes, Gstreamer TI Plug-in. Loading/Unloading Device Drivers. Setting up web server. Setting up Wi-Fi module. Unofficial laboratory exercises, one Term Project.

Course Methodology:

1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study

Course Evaluation Methods:

A: Testing, B: Experiment, C: Homework, D: Project

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Adequate knowledge in microprocessor architectures, embedded Linux, embedded graphics (Qt).	1,2,3,4,5	1,2,3	A, B, C, D
2) Ability to write Qt/Qt Embedded GUI applications, network applications, digital multimedia applications.	1,2,3,4,5	1,2,3	B, D
3) Ability to debug, verify, emulate embedded Linux systems.	4,5	1,2,3	B, D
4) Ability to devise, select, and use modern techniques and tools needed for embedded Linux systems.	4,5	1,2,3	B, D
5) Ability to work in a team.	6	3	B, D

COURSE CONTENT

Week	Topics	Study Materials
1	EMBEDDED OR NOT? ANATOMY OF AN EMBEDDED SYSTEM. WHY LINUX? PROCESSOR BASICS. LINUX BASICS.	Textbook
2	RS232. TERMINAL EMULATORS.	Textbook
3	CROSS-DEVELOPMENT ENVIRONMENT, NATIVE/TARGET COMPILATION, TOOLCHAINS, GDB, GDBSERVER, TI DVSDK.	Textbook
4	BIOS VERSUS BOOTLOADERS, U-BOOT.	Textbook

5	SETTING UP NETWORK SERVICES. BOOTING THE KERNEL (SD-CARD OR NFS/TFTP).	Textbook
6	CONFIGURING/BUILDING LINUX KERNEL AND ROOT FILE SYSTEM.	Textbook
7	MIDTERM 1	Textbook
8	SETTING UP WI-FI MODULE. LOADING/UNLOADING DEVICE DRIVERS. DEVICE DRIVER BASICS.	Textbook
9	GPIO, SYSFS, FILE SYSTEMS, FRAMEBUFFER, TOUCHSCREEN DEVICE.	Textbook
10	EMBEDDED GRAPHICS, WINDOWING ENVIRONMENT, QT/QT EMBEDDED, VIRTUAL FRAMEBUFFER, EMBEDDED GUI APPLICATION DEVELOPMENT.	Textbook
11	SETTING UP WEB SERVER.	Textbook
12	DIGITAL MULTIMEDIA APPLICATIONS, GSTREAMER/GSTREAMER PIPES, GSTREAMER TI PLUGIN.	Web/Open Source Library
13	MIDTERM 2	_
14	PROJECT DEMOS	_

RECOMMENDED SOURCES

Textbook KARIM YAGHMOUR, "BUILDING EMBEDDED LINUX SYSTEMS," O'REILLY

AdditionalCHRISTOPHER HALLINAN, "EMBEDDED LINUX PRIMER," PRENTICEResourcesHALL OPEN SOURCE SOFTWARE DEVELOPMENT SERIES.

MATERIAL SHARING

Documents	coadsys.yeditepe.edu.tr/
Assignments	coadsys.yeditepe.edu.tr/
Exams	coadsys.yeditepe.edu.tr/

ASSESSMENT

IN-TERM STUDIES	NUMBER	PERCENTAGE
Mid-terms	2	50
Assignment	5	5
Lab Work (unofficial)	10	15

Term Project	1	30
Total		100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		30
CONTRIBUTION OF IN-TERM STUDIES TO OVERAL GRADE	L	70
Total		100

COURSE'S CONTRIBUTION TO PROGRAM

No	Program Learning Outcomes	Сс	Contribution					
		0	1	2	3	4	5	
1	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.			X				
2	Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.						X	
3	Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.						X	
4	Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.						X	
5	Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.						X	
6	Ability to work efficiently in intra-disciplinary and multi- disciplinary teams; ability to work individually.						Χ	
7	Ability to communicate effectively both orally and in writing; knowledge of a minimum of one foreign language.	X						
8	Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.	X						
9	Awareness of professional and ethical responsibility.	X						

10	Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.	X	

Χ

11 Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Excluding the exam weeks: 12x Total course hours)	12	3	36
Hours for off-the-classroom study (Pre-study, practice)	14	2	28
Midterm examination	2	2	4
Homework	5	1	5
Project	1	45	45
Final examination	1	4	4
Total Work Load			122
Total Work Load / 25 (h)			4.88
ECTS Credit of the Course			5