Electrical Circuits

Course Code:
EE 211
Course Period:
Autumn
Course Type:
Core
Credits:
4
Theoric:
3
Practice:
0
ECTS:
7
Course Language:
English
Course Content:
Electrical variables, circuit elements, circuits. Current and voltage measurements.

Definition of charge, flux, power and energy. General 2-terminal, multi-terminal and multiport circuit elements; R, L and C; their electrical features. Commonly used 2-terminal, 2port and 3-terminal circuit elements and their electrical features. Modeling of physical circuit elements by ideal circuit elements. Kirchhoff's current equations for nodes and for Gaussian Surfaces. Kirchhoff's voltage equations for the loops and meshes. Power and energy conservation theorems in electrical circuits. Time domain analysis of linear resistive circuits using basic circuit equations and, node-voltages and mesh-currents methods. Resistive voltage and current dividers. Equivalent circuits. Source transformations. Modelling. Circuit functions. Circuit theorems. 2-port parameters. Their use in resistive circuit analysis. Time domain analysis of linear resistive 1st-order dynamic circuits (RL- and RC- circuits) by the use of state-variables method. Laboratory experiments. Course Methodology:

1: Lecture by instructor, 2: Lecture by instructor with class discussion, 3: Problem solving by instructor, 4: Use of simulations, 5: Problem solving assignment, 6: Reading assignment, 7: Laboratory work, 8: Term research paper, 9: Presentation by guest

Course Evaluation Methods:

A: Written exam, B: Multiple-choice exam C: Take-home quiz, D: Experiment report, E: Homework, F: Project, G: Presentation by student,

Course Learning Outcomes	Detailed Program Outcomes	Teaching Methods	Assessment Methods
1-Ability to define electrical variables (current, voltage, charge, flux, power and energy), electrical circuit elements and electrical circuits.	1a	1,3,5,6	A
2-Ability to define circuit elements (2- terminal, 2-port, 3 terminal, resistor, inductor, capacitor) and their electrical features (linear/nonlinear, time variant/invariant, active/passive).	1a	1,3,5,6	A
3-Ability to write Kirchhoff's current equations for nodes and for Gaussian Surfaces.	2a	1,3,5,6	A
4-Ability to write Kirchhoff's voltage equations for loops and meshes.	2a	1,3,5,6	A
5-Ability to use the power and energy conservation theorems in electrical circuits.	2a	1,3,5,6	A
6-Ability to implement basic electrical circuits in the laboratory using standard circuit elements and units.	4a, 4b, 5b, 6a, 6c, 7c, 7e, 9b	1,3,5,6	A,D
7-Ability to analyze linear resistive circuits by using basic circuit equations (independent current, independent voltage and element defining equations) and circuit analysis methods (node-voltages and loop- currents).	2b	1,3,5,6	A

8-Abilit using re equival modelin elemen function theorer Maximu two-pot	y to analyze linear resistive circuits by esistive voltage and current dividers, ent circuits, source transformations, ng (modeling of physical circuit hts by ideal circuit elements), circuit ns (input and transfer), circuit ms (Superposition, Thevenin, Norton, um power transfer, Reciprocity) and rt circuit parameters.	2b	1,3,5,6	A
9-Abilit circuits methoo	A			
Week	Торісѕ			Study Materials
1	Electrical variables (current, voltage, c energy).Their units in SI. Circuit eleme Measurement devices. Current and vo ammeter and voltmeter.	Chapters 1, 2		
2	Definitions of charge, fluxes, power and energy in terms of current and voltage.			Chapters 1, 2
3	2-terminal, multi-terminal, multi-port circuit elements. Resistors, inductors and capacitors. Definitions of electrical features of circuit elements: linear/nonlinear, time varying/time-invariant, active/passive circuit elements. Equivalent circuits.			Chapters 2,7
4	Definitions of commonly used ideal 2-terminal, 2-port and 3- terminal circuit elements. Their electrical features. Independent and dependent voltage and current sources, practical voltage and current sources, linear passive resistor, negative resistor, diode, opening and closing switches, ideal transformer, negative converters. Gyrator. Operational amplifier. Transformer. Modeling of physical circuit elements by the ideal circuit elements. Equivalent circuits.			Chapters 1,2,5,6,11,14
5	Kirchhoff's current equations for the no surfaces.	odes and Gauss	sian	Chapter 3
6	Kirchhoff's voltage equations for the loops and meshes. Gaussian closed surfaces.			Chapter 3
7	Power and energy conservation theore	ems in electrica	l circuits.	Chapter 11
8	Time domain analysis of linear resistive circuits using basic circuit equations (independent current equations, independent voltage equations and defining equations of circuit elements).			Chapter 4
9	Time domain analysis of linear resistive voltage method.	e circuits using	node-	Chapter 4

10	Time curre	domain analysis of linear resistive circuits using mesh- nt method.	Chapter 4
11	Time voltag trans elem	domain analysis of linear resistive circuits using resistive ge and current dividers, equivalent circuits, source formations and modelling (modelling of physical circuit ents by ideal circuit elements).	Chapters 3,5
12	Time (inpu Norto	Chapters 5,13	
13	Time circui	domain analysis of linear resistive circuits using 2-port t parameters.	Chapter 7
14	4 Time domain analysis of linear resistive 1st-order dynamic Chapters 8, circuits (RL- and RC- circuits) by the use of state-variable method.		
Textbook Richard C. Dorf, and James A. Svoboda, 'Introduction to Electrical Circuits', John and Wiley, New York, 9th addition. ISBN:978-1-118-3218 9			ectrical -1-118-32182-
Additional ResourcesJames W. Nilsson, and Susan A. Riedel, 'Electric Circuits', Last Edition, Pearson Prentice Hall, 2004.			Last Edition,
Docum	nents	Laboratory experiment sheets	
Assignments Homework problems			
Exams	;	Previous exam problems and their solutions	

IN-TERM STUDIES	NUNDER	PERCENTAGE
Midterms	2	40/60
Laboratory experiments	7	20/60
Homework assignments	17	-
Total		60/60
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	1	40
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60
Total		100

COURSE'S CONTRIBUTION TO PROGRAM OUTCOMES

No	Program Learning Outcomes	$_{\rm lock}$
1a	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline,	\checkmark
1b	Ability to use theoretical and applied knowledge in these areas in complex engineering problems.	
2a	Ability to identify, formulate, and solve complex engineering problems,	
2b	Ability to select and apply proper analysis and modeling methods for this purpose.	\checkmark
За	Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result,	
3b	Ability to apply modern design methods for this purpose.	
4a	Ability to devise, select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice.	\checkmark
4b	Ability to employ information technologies effectively.	
5a	Ability to design experiments for investigating complex engineering problems or discipline specific research questions,	
5b	Ability to conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.	\checkmark
6a	Ability to work efficiently in intra-disciplinary teams,	
6b	Ability to work efficiently in multi-disciplinary teams,	
6c	Ability to work individually.	
7a	Ability to communicate effectively in Turkish, both orally and in writing,	
7b	Knowledge of a minimum of one foreign language,	
7c	Ability to write effective reports and comprehend written reports, prepare design and production reports,	\checkmark
7d	Ability to make effective presentations,	
7e	Ability to give and receive clear and intelligible instructions.	
8a	Recognition of the need for lifelong learning, ability to access information, ability to follow developments in science and technology,	
8b	Ability to continue to educate him/herself.	

ECTS Credit of the Course 7				7
Tota	Total Work Load / 25 (h) 6.68			
Tota	Total Work Load167			
Pre-laboratory 7 2 14				14
Labo	pratory	7	2	14
Final examination 1			2	2
Mid-	terms	2	1	2
Exer	cises and Solutions	17	3	51
Hours for off-the-classroom study (Pre- study, practice) 14 3 42				42
Cour	rse Duration	14	3	42
11c Activ	Awareness of the legal consequences	of engineer Quantity	ing solutions. Duration (Hour)	Total Workload (Hour)
11b	 Knowledge about contemporary issues of the century reflected into the field of engineering. 			
11a	a Knowledge about the global and social effects of engineering practices on health, environment, and safety,			
10c	Knowledge about sustainable development.			
10b	Awareness in entrepreneurship and innovation.			
10a	Knowledge about business life practices such as project management, risk management, change management.			
9b	Knowledge on standards used in engineering practice. $$			
9a	Consciousness to behave according to ethical principles and professional and ethical responsibility.			