Digital System Design

Course Code:
CSE 425
Course Period:
Autumn
Course Type:
Area Elective
Credits:
3
Theoric:
3
Practice:
0
Laboratory Hour:
0
ECTS:
5
Prerequisite Courses:
<u>Principles of Logic Design</u> [1] Course Language:
English

Course Objectives:

This practical, hands-on course introduces digital logic design, system-level design using current state of the art in EDA tools used by professionals in VLSI field today. Students learn to design large-scale logic circuits from fundamental building blocks and methods. This course focuses mostly on the front-end techniques involved in ASIC/FPGA design flow, but also gives a brief introduction of CMOS process and CMOS logic. Through a series of laboratory exercises using FPGA boards, students will acquire skills in the design/verification/implementation of digital systems.

Course Content:

The what/why/how of ICs, FPGAs, and ASIC Flow, MOS Transistors, CMOS Logic, CMOS Process. Verilog and basic digital design principles. Data paths, adders, multipliers, memory, embedded-processors, IPs. Behavioral design specification, system partitioning, register-transfer design, hardware description languages (Verilog, VHDL), pipelining, parallelism, resource sharing, hand shaking, design verification, and simulation, high level verification languages, code coverage, high-level synthesis, FPGA prototyping, gate-level timing, test generation, design for testability. Laboratory exercises, one Term Project.

Course Methodology:

1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study

Course Evaluation Methods:

A: Testing, B: Experiment, C: Homework, D: Project

Course	Course Learning Outcomes		Teaching Mothodo	Assessment Methodo	
		Learning Outcomes	Methods	Methous	
1) Adeo design	quate knowledge in digital system concepts.	1,2,3,4,5	1,2	A,B,C,D	
2) Abili circuits conditio	ty to design and implement digital under realistic constraints and ons.	1,2,3,4,5	1,2,3	B,D	
3) Abili digital d	ty to debug, verify, simulate, synthesize circuits.	4,5	1,2,3	B,D	
4) Abili techniq system	ty to devise, select, and use modern ues and tools needed for digital design.	4,5	1,2,3	B,D	
5) Ability to work in a team.		6	3	B,D	
COURSE CONTENT					
Week	Topics			Study Materials	
1	THE WHAT/WHY/HOW OF ICS, FPGA FULL-CUSTOM, SEMI-CUSTOM, STA DESIGN.	S, AND ASIC NDARD CELI	FLOW. _ VLSI	Textbook	

2 MOS TRANSISTORS. CMOS LOGIC. CMOS PROCESS. INTRO. VLSI LAYOUT SYNTHESIS. DRC. LVS.

3	VERILOG AND BASIC DIGITAL DESIGN PRINCIPLES. BEHAVIORAL AND RTL DESIGN ENTRY	Textbook
4	COMBINATIONAL & SEQUENTIAL DIGITAL DESIGN. FSM. INTRO. COMP. ARITHMETIC. DATA PATH. ADDERS. MULTIPLIERS. IPs.	Textbook
5	DESIGN VERIFICATION CONCEPTS. SIMULATION. COVERAGE.	Textbook
6	MIDTERM I	Textbook
7	SCHEDULING. PIPELINING. RESOURCE SHARING. HAND SHAKING	Textbook
8	MULTIPLE CLOCK DOMAINS. ASYNC/SYNCH FIFO. METASTABILITY ISSUES.	Textbook
9	HIGH LEVEL SYNTHESIS. GATE LEVEL TIMING.	Textbook
10	MEMORY INFERENCE, FIFO, BLOCK RAMS, EXTERNAL RAMS. IP CORE GENERATOR.	Textbook
11	RS232, VGA, HDMI, LCD, SPI, PCI, I2C	Textbook
12	TEST AUTOMATION. INTRO. VLSI TEST (MANUFACTURING TEST), DESIGN FOR TESTABILITY, ATPG.	Textbook
13	MIDTERM EXAM II	Textbook
14	PROJECT DEMOS	_

RECOMMENDED SOURCES

Textbook

MODERN VLSI DESIGN BY WAYNE WOLF, PRENTICE-HALL

Additional	ART OF HARDWARE ARCHITECTURE BY MOHIT ARORA,
Resources	SPRINGER
	FPGA PROTOTYPING BY VERILOG EXAMPLES BY PONG P. CHU, WILEY.

MATERIAL SHARING

Documents	coadsys.yeditepe.edu.tr/
Assignments	coadsys.yeditepe.edu.tr/
Exams	coadsys.yeditepe.edu.tr/

ASSESSMENT

IN-T	ERM STUDIES	NUN	/IBE	R	PE	RC	EN ⁻	TAGE
Mid	terms	2			50			
Ass	ignment	2			5			
Lab	Work	10			15			
Terr	n Project	1			30			
Tota	al				10	0		
COI OVE	NTRIBUTION OF FINAL EXAMINATION TO ERALL GRADE				30			
COI GR/	NTRIBUTION OF IN-TERM STUDIES TO OVERALL ADE				70			
Total 100								
COI	JRSE'S CONTRIBUTION TO PROGRAM							
No	Program Learning Outcomes		Contribution					
			0	1	2	3	4	5
1	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant disciplin ability to use theoretical and applied information in the areas to model and solve engineering problems.	ne; se						X
2	Ability to identify, formulate, and solve complex engineering problems; ability to select and apply prope	er						X
	analysis and modeling methods for this purpose.							

4	Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.	X
5	Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.	X
6	Ability to work efficiently in intra-disciplinary and multi- disciplinary teams; ability to work individually.	X

7	Ability to communicate effectively both orally and in writing; knowledge of a minimum of one foreign language.	X
8	Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.	X
9	Awareness of professional and ethical responsibility.	X
10	Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.	X
11	Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.	X

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Excluding the exam weeks: 12x Total course hours)	12	3	36
Hours for off-the-classroom study (Pre-study, practice)	14	2	28
Midterm examination	2	4	8
Homework	2	4	8
Project	1	40	40
Final examination	1	6	6
Total Work Load			126
Total Work Load / 25 (h)			4.85
ECTS Credit of the Course			5